Maharashtra State Board of Technical Education, Mumbai

LABORATORY PLAN (LP)

Academic Year: 2025-26

Date: 09/12/2025

K-2

Institute Name & Code: K. K. Wagh Polytechnic, Nashik-3 (0078) Class: TYCH

Program and Code: Chemical Engineering (CH)

Course Index: CO605

Course Name: Process Simulation in Chemical Engineering

Total Hrs:30 Semester: 6th Scheme: K

Course Code & Abbr.: 316003 - PSCE

Name of Faculty: Mrs. Y. S. Kumawat

• INDUSTRY EXPECTED OUTCOME

The aim of this course is to help the students to attain the following industry identified outcomes through various teaching learning experiences: Chemical engineering students efficiently use process simulation software for process optimization in industrial applications.

• COURSE LEVEL LEARNING OUTCOMES (COS)

CO605.1 - Use the given process simulation software.

CO605.2 - Utilize the interface of process simulation software.

CO605.3 - Analyze the process simulation within the given software.

CO605.4 - Simulate process equipment by adjusting parameters in process simulation software.

CO605.5 - Use process simulation software for process optimization through sensitivity analysis.

• Teaching and Examination Scheme:

				Learning Scheme					Assessment Scheme												
				Actual Contact Hrs/Week					ation	Theory			Based on LL & TSL Practical			Based on SL					
Cours e Code	Course Title	Abbr	Cours e Categ ory/s	С	T	L	SLH	NLH	Credits	Paper Durati	FA - T H	SA - T H	То	tal	FA-	-PR	SA-	PR	SI	_A	Total Marks
				L		L					Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
31600 3	PROCESS SIMULATION IN CHEMICAL ENGINEERING	PSCE	SEC	2	-	2	-	4	2	-	-	-	-	-	25	10	25 @	10	-	-	50

Abbreviations: CL- Class Room Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

• Laboratory Learning Outcome (LLO)

LLO No.	Title of LLO
LLO 1.1	Navigate menus, toolbars, and workspace settings to understand software functionality.
LLO 2.1	Draw a basic process flow diagram using appropriate simulation software.
LLO 3.1	Draw a distillation column flowsheet using simulation software.
LLO 4.1	Draw a process flowsheet for a compressor system and accurately enter stream and
	compressor data for analysis
LLO 5.1	Use simulation software to draw a compressor system and predict its outlet temperature.
LLO 6.1	Draw a process flowsheet for a rigorous distillation column and accurately enter stream and
	compressor data for analysis.
LLO 7.1	Analyze the impact of reflux ratio on stage requirements.
LLO 8.1	Analyze the impact of feed composition on number of stage requirements.
LLO 9.1	Tabulate and interpret condenser duty result
LLO 10.1	Evaluate the effect of different fluids on pump performance and workdone.
LLO 11.1	Apply energy balance principles to calculate utility outlet stream temperature heat exchanger.
LLO 12.1	Plot Txy diagram at a given pressure for binary system.
LLO 13.1	Tabulate and interpret conversion results from simulation data
LLO 14.1	Determine percentage conversion in Plug Flow Reactor (PFR).
LLO 15.1	Interpret simulation results to understand the effects of pressure and composition on bubble
	and dew points.

• COs, Practical Laboratory Learning Outcome (LLOs) and Mapping:

PR. No	Relevant COs	Practical - Laboratory Learning Outcome	Practical Titles	Planned	d Dates	Actual Date of conduction	Remark/ Assess- ment Date with Staff sign
	~ č	(LLO)		From	То		
4	CO1	LLO 1.1	*Installation of given simulation software and interact with its interface.	A-19/12/25	A-26/12/25		
1				B-20/12/25	B-27/12/25		
2	CO1 CO2	LLO2.1	*Creation of any one simple flowsheet in given simulation software.	A-26/12/25	A-02/01/26		
				B-27/12/25	B-03/01/26		
	CO2 CO3	LLO 3.1	*Draw distillation column flowsheet, add feed stream and operation input data using simulation software	A-02/01/26	A-09/01/26		
3				B-03/01/26	B-10/01/26		
4	CO2	LLO 4.1	*Creation of compressor flowsheet and enter the	A-09/01/26	A-16/01/26		
4	CO3	3	stream and compressor data.	B-10/01/26	B-17/01/26		
5	CO2	LLO 5.1	*Simulation of compressor to find outlet temperature and tabulate the result	A-16/01/26	A-23/01/26		
5	CO3			B-17/01/26	B-24/01/26		
	CO2	LLO 9.1	*Generation of rigorous distillation column flowsheet and enter the	A-23/01/26	A-30/01/26		
6	CO3			B-24/01/26	B-31/01/26		

PR. No	Relevant COs	Practical - Laboratory Learning Outcome (LLO)	Practical Titles	Planned	d Dates	Actual Date of conduction	Remark/ Assess- ment Date with Staff sign
			stream, operation data and find out purity of product.				
	CO2		*Calculation of condenser duty using	A-30/01/26	A-06/02/26		
7	CO3 CO4	LLO 10.1	process simulation software.	B-31/01/26	B-07/02/26		
8	CO2 CO3	LLO 11.1	*Simulation of pump for different fluids to	A-06/02/26	A-13/02/26		
	CO4		calculate its work done.	B-07/02/26	B-14/02/26		
	CO2		*Calculation of utility outlet stream	A-13/02/26	A-20/02/26		
9	CO3 CO4	LLO 11.1	temperature from shell and tube heat exchanger using simulation software.	B-14/02/26	B-21/02/26		
	CO2		Calculation of	A-20/02/26	A-27/02/26		
10	CO3 CO4 CO5	LLO 13.1	conversion percentage from conversion function in CSTR using simulation software	B-21/02/26	B-28/02/26		
	CO2 CO3	LLO 14.1	Calculation of conversion percentage from conversion	A-27/02/26	A-06/03/26		
11	CO4 CO5	14.1	function in Plug Flow Reactor(PFR) using simulation software	B-28/02/26	B-07/03/26		
	CO2		*Calculation of dew	A-06/03/26	A-13/03/26		
12	CO2 CO3 CO4 CO5	LLO 15.1	point and bubble point of component mixture at different concentration and pressure using simulation software.	B-07/03/26	B-14/03/26		
13			Beyond Syllabus	A-13/03/26	A-20/03/26		
13			Practical.	B-14/03/26	B-21/03/26		

• ASSESSMENT METHODOLOGIES/TOOLS

A. Formative assessment (Assessment for Learning)

• Two Class Test of 30 Marks Each, Term Work Assessment of 25 Marks, and Self learning assessment of 25 marks.

B. Summative Assessment (Assessment of Learning)

• End Term Theory Examination, End Term Practical Examination

Laboratory Equipment / Instruments / Tools / Software required

Sr. No.	Equipment Name with Broad Specifications	Relevant LLO Number
1	DWSIM open-source software	ALL
2	Any other commercial process simulation software	ALL

• References:

• Suggested Learning Materials / Books:

Sr.	Link / Portal	Description
1	https://spoken-tutorial.org/tutorial-search/?search_foss=DWS IM & search_ language=English	Spoken tutorials
2	https://dwsim.org/index.php/download/	DWSIM Open source Software
3	https://dwsim.org/wiki/index.php?title=Tutorials	Tutorials
4	https://www.iitg.ac.in/tamalb/documents/introtoaspen.pdf	Notes
5	https://chemstations.com/knowledge_center	Notes

Mrs. Y. S. Kumawat (Name & signature of staff)

Dr. P. S. Bhandari (Name & signature of HOD)